Network operations

what is network?

A network is a group of computers and computing devices connected together through communication channels, such as cables or wireless media. The computers connected over a network may be located in the same geographical area or spread across the world. The Internet is the largest network in the world and can be called "the network of networks".

ip address

Devices attached to a network must have at least one unique network address identifier known as the IP (Internet Protocol) address. The address is essential for routing packets of information through the network. Exchanging information across the network requires using streams of small packets, each of which contains a piece of the information going from one machine to another. These packets contain data buffers, together with headers which contain information about where the packet is going to and coming from, and where it fits in the sequence of packets that constitute the stream. Networking protocols and software are rather complicated due to the diversity of machines and operating systems they must deal with, as well as the fact that even very old standards must be supported.

IPV4 and IPV6

There are two different types of IP addresses available: IPv4 (version 4) and IPv6 (version 6). IPv4 is older and by far the more widely used, while IPv6 is newer and is designed to get past limitations inherent in the older standard and furnish many more possible addresses.

IPv4 uses 32-bits for addresses; there are only 4.3 billion unique addresses available. Furthermore, many addresses are allotted and reserved, but not actually used. IPv4 is considered inadequate for meeting future needs because the number of devices available on the global network has increased enormously in recent years.

IPv6 uses 128-bits for addresses; this allows for 3.4 X 1038 unique addresses. If you have a larger network of computers and want to add more, you may want to move to IPv6, because it provides more unique addresses. However, it can be complex to migrate to IPv6; the two protocols do not always inter-operate well. Thus, moving equipment and addresses to IPv6 requires significant effort and has not been quite as fast as was originally intended. We will discuss IPv4 more than IPv6 as you are more likely to deal with it.

One reason IPv4 has not disappeared is there are ways to effectively make many more addresses available by methods such as NAT (Network Address Translation). NAT enables sharing one IP address among many locally connected computers, each of which has a unique address only seen on the local network. While this is used in organizational settings, it also used in simple home networks. For example, if you have a router hooked up to your Internet Provider (such as a cable system) it gives you one externally visible address, but issues each device in your home an individual local address.

decoding IPv4

A 32-bit IPv4 address is divided into four 8-bit sections called octets.

Example: IP address → 172 . 16 . 31 . 46 Bit format → 10101100.00010000.00011111.00101110

NOTE: Octet is just another word for byte.

Network addresses are divided into five classes: A, B, C, D and E. Classes A, B and C are classified into two parts: Network addresses (Net ID) and Host address (Host ID). The Net ID is used to identify the network, while the Host ID is used to identify a host in the network. Class D is used for special multicast applications (information is broadcast to multiple computers simultaneously) and Class E is reserved for future use.

  • Class A network address – Class A addresses use the first octet of an IP address as their Net ID and use the other three octets as the Host ID. The first bit of the first octet is always set to zero. So you can use only 7-bits for unique network numbers. As a result, there are a maximum of 126 Class A networks available (the addresses 0000000 and 1111111 are reserved). Not surprisingly, this was only feasible when there were very few unique networks with large numbers of hosts. As the use of the Internet expanded, Classes B and C were added in order to accommodate the growing demand for independent networks. Each Class A network can have up to 16.7 million unique hosts on its network. The range of host address is from 1.0.0.0 to 127.255.255.255.

  • Class b network address – Class B addresses use the first two octets of the IP address as their Net ID and the last two octets as the Host ID. The first two bits of the first octet are always set to binary 10, so there are a maximum of 16,384 (14-bits) Class B networks. The first octet of a Class B address has values from 128 to 191. The introduction of Class B networks expanded the number of networks but it soon became clear that a further level would be needed. Each Class B network can support a maximum of 65,536 unique hosts on its network. The range of host addresses is from 128.0.0.0 to 191.255.255.255.

  • Class C network address – Class C addresses use the first three octets of the IP address as their Net ID and the last octet as their Host ID. The first three bits of the first octet are set to binary 110, so almost 2.1 million (21-bits) Class C networks are available. The first octet of a Class C address has values from 192 to 223. These are most common for smaller networks which don’t have many unique hosts. Each Class C network can support up to 256 (8-bits) unique hosts. The range of host addresses is from 192.0.0.0 to 223.255.255.255.

what is a name resolution?

Name Resolution is used to convert numerical IP address values into a human-readable format known as the hostname. For example, 104.95.85.15 is the numerical IP address that refers to the hostname whitehouse.gov. Hostnames are much easier to remember!

Given an IP address, one can obtain its corresponding hostname. Accessing the machine over the network becomes easier when one can type the hostname instead of the IP address.

Then comes the network configuration files and these are essential to ensure that interfaces function correctly. They are located in the /etc directory tree. However, the exact files used have historically been dependent on the particular Linux distribution and version being used.

For Debian family configurations, the basic network configuration files could be found under /etc/network/, while for Red Hat and SUSE family systems one needed to inspect /etc/sysconfig/network.

Network interfaces are a connection channel between a device and a network. Physically, network interfaces can proceed through a network interface card (NIC), or can be more abstractly implemented as software. You can have multiple network interfaces operating at once. Specific interfaces can be brought up (activated) or brought down (de-activated) at any time.

A network requires the connection of many nodes. Data moves from source to destination by passing through a series of routers and potentially across multiple networks. Servers maintain routing tables containing the addresses of each node in the network. The IP routing protocols enable routers to build up a forwarding table that correlates final destinations with the next hop addresses.

Let’s learn about more networking tools like wget and curl. Sometimes, you need to download files and information, but a browser is not the best choice, either because you want to download multiple files and/or directories, or you want to perform the action from a command line or a script. wget is a command line utility that can capably handle these kinds of downloads. Whereas curl is used to obtain information about any specific URL.

File Transfer Protocol(FTP)

File Transfer Protocol (FTP) is a well-known and popular method for transferring files between computers using the Internet. This method is built on a client-server model. FTP can be used within a browser or with stand-alone client programs. FTP is one of the oldest methods of network data transfer, dating back to the early 1970s.

Secure Shell(SSH)

Secure Shell (SSH) is a cryptographic network protocol used for secure data communication. It is also used for remote services and other secure services between two devices on the network and is very useful for administering systems which are not easily available to physically work on, but to which you have remote access.

Leave a Comment

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s